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1 Introduction

In this paper we introduce a bijection between a class of univariate cumulative
distribution functions and a class of monotone decreasing functions which we call
Omega functions. More precisely, if F' is a univariate cumulative distribution
with domain D = (a,b) where @ may be —oo and/or b may be co, and F' satisfies
a simple growth condition,there is a unique monotone function Qp from (a,b)
to (0,00). With very mild assumptions, each such function may be used to
reconstruct a unique cumulative distribution. (In fact, there is a closed form
expression for the distribution in terms of Qp and its first two derivatives [3].)
The correspondence between cumulative distributions and Omega functions
is therefore a natural duality. The global properties of the distribution are
reflected in local properties of the Omega function. For example, the mean is
the unique point at which the Omega function takes the value 1. For a normal
distribution with mean p and variance o2, the slope of the Omega function at
1 is _T‘/ﬁ Higher moments are encoded in the shape of the Omega function.
The latter property of the Omega function makes it particularly well suited to
the study of statistical data, such as financial time series, in which the deviation
from normality is often critical but is difficult to estimate reliably through the
use of higher moments due to noisy or sparse data, or is difficult to incorporate

into models of markets and behaviour. This application was in fact what led
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to the discovery and development of the Omega function [1, 2]. We present the
derivation in its original form here, but note that it may be motivated equally
well by any application in which benefits and costs, gains and losses are to be
compared.

In section 2 we present the definition of Omega and its most important prop-
erties, with proofs of the latter results. In section 3 we provide some examples
of Omega functions for standard univariate distributions. Section 4 contains
an indication of further results which we will report on separately and a brief

discussion of some open questions.

2 The Omega function of a cumulative distribu-
tion

We motivate the definition of the Omega function using an example from finance.
We consider the returns distribution F' for some financial instrument and we let
D=(a, b) denote the domain of F'. Next we set a return level r=L in (a, b) which
is to be regarded as a loss threshold. In other words, we consider a return above
the level L as a gain and a return below L as a loss. With this starting point we
now consider the quality of a bet on a gain. To evaluate this, we must consider
both the ‘odds’, namely what we will win if we win and what we will lose if we
lose, as well as the ‘form’ namely the probabilities of winning and losing.

As an example, we might regard the amount by which the conditional ex-
pectation E(r | r > L) exceeds L as an indicator of what we stand to win if
we win. The amount by which the conditional expectation E(r | < L) falls
below L is an indicator of what we stand to lose if we lose. If we weight the
expected gain ¢ = E(r — L | r > L) and loss | = E(L —r | r < L) by the

respective probabilities of a gain and a loss, namely 1 — F'(L) and F(L),their

E(r—L|r>L)(1—F(L))
E(L—r|r<L)F(L)

Of course the conditional expected gain and loss are only one pair of infinitely

ratio, is a rough measure of the quality of our bet.

many possible gains and losses. For example we may consider separately the
possibility of the gains from returns of L + Ax and L + 2Az with probability
weights of 1 — F(L) and 1 — F(L+ Az) respectively. We also have the possibility
of losses from returns of L — Az and L — 2Az with probability weights of F'(L)

and F(L — Ax) respectively. Taking these possible returns into account leads



to (1_FI£(L L);ﬁiig(}}i(i:)i?mr as an estimate of the quality of a bet on a return

above the level of L. If we continue in this vein, letting our unit of gain and

loss, Ax, tend to zero, we are led, in the limit, to the the integral

b
L(L) = / 1 — F(z)dz. (1)

L

as the total probability weighted gains and to the integral

L
L(L) = / F(z)dx 2)

as the total probability weighted losses. The ratio of these is our measure of
probability weighted gains to losses for a bet on a return above r = L (assuming,
as we do henceforward, that these integrals are finite.)

If we now let the risk threshold L run over the domain of the cumulative
distribution of returns, we obtain the function Q2 , which we call the Omega
function of the distribution F, defined on (a,b) by

Qr(r) = §E§ (3)
where
Li(r)= /T F(z)dx (4)
and

b
IL(r) = / 1— F(x)dx. (5)

It is obvious that each cumulative distribution leads unambiguously to an
Omega function, provided that the integrals in question exist for finite values
of r. Among the properties of this function which we extablish in the theorem,
is the fact that the map from distributions to Omega functions is one to one.
(The inverse problem of reconstructing a distribution from an Omega function

is the subject of a separate article [3].)



Theorem 1 If F' and G are continuous distributions on (a,b) such that the
integrals (4) and (5) exist for all v in (a,b) then

1) Qp(r) giggg:;; where C(r)=max(z —r,0), P(r) = mazx(r — z,0) and
Er denotes expectation with respect to the distribution F.

2)Qp is differentiable and dQF W Iir)

3)Qr is a monotone decreasmg function from (a,b) to (0,00).

4) If ¢ is an affine diffeomorphism of (a,b), let H denote the induced distribution,H=Fo
o7l IfF L > 0 then Qu(o(r)=Qr(r) for all v in (a,b). If % < 0 then
Qu(d(r)=Qr(r)~t for all v in (a,b).

5) If p is the mean of the distribution F then Qp(u)=

6) F is symmetric about p if and only if Qp(r — p)=Qp(r + u)=t for all r
n (a,b).

7) If Fy is a smooth 1-parameter family of deformations of F with Fy := F
and FO) = dA |>\ 0, let Qy denote QFA Then

I8 vco= 1tz (= I FO(@)daly(r) — [T FO(z)dly(r)).

8) Qp =Qq if and only if F =G.

Proof.

) This follows immediately from the definition of Qr and the fact that
Er(¢ fo — Fy) (y)dy — ff Fy(2)(y)dy where Fy, is the distribution
mduced by o.

2) This follows directly from the definition of Qp.

3) This follows from 2) and the definition of Qf.

4) This follows from the definition of Qr by making a change of variable in
the integrals I1(r) and I (r).

5) If p = 0 it is immediate from the definitions of I;(r) and Ix(r) that
I5(0) — I;(0) = 0 which establishes 5) in this special case. The general case, for
a distribution F' with 1 # 0 now follows by using the translation ¢(z) = = — p.
The distribution H = F o ¢! induced by ¢ has its mean at 0 so Qg (0) = 1.
But Qg (0) = Qp(p) by 4).

6) This follows from the definition of Qz by changing variables in I (r) and
Is(r).

7) This follows from the definition of Qp, by exchanging the orders of dif-

ferentiation and integration.



8) It is immediate that when F' = G, Qr = . Next we assume that

Qp = Q¢. Let Qp(r) = ﬁg:; as usual and let Qg (r) = jf—g:; We note first that

it follows from Qr = Q¢ that up = pg as the mean is the inverse image of 1.

We use p to denote the common mean and will show that for all » > 0, we have
Lp—7r)=Ji(p—r). Let I:=1(u) =L(p) and J := Ji(pu) = Jo(u). If we
let Ap = :41 — F(z)dz and Bp = :7TF(x)dx, then Io(p — 1) = I + Ap
and I1(u —r) = I — Brp. With the obvious notation for Ag and Bg we also
have Jo(u —r) = J + Ag and J1(u —r) = J — Bg. Since Ap + Bp = r and

J+r—Bg __ I4+r—Bp
J-Bg ~  I-Bp °

It follows that r(I — Bp) = r(J — Bg) and, as r # 0,/ — Bp = J — Bg. But
this is the same as I;(p — ) = J1 (0 — r) and this relation therefore holds for

Ag + Bg = r, the equality of Qp and Q¢ at u — r gives

all » > 0. The same argument shows that this holds for all » < 0 as well and,
by continuity, it holds at » = 0 and hence we have I;(r) = Ji(r) for all r. By
differentiating this relation we obtain F = G. W

3 The Omega functions for some standard uni-
variate distributions

The Omega function is a non-local function of a distribution. This means that
it encodes some properties of the distribution in a way which is not immediately
obvious from the appearance of the graph of either the distribution or its density.
This information lends itself naturally to graphical interpretation. For example,
if we consider two symmetric distributions with the same mean, the one with
fatter tails will have a flatter Omega function asymptotically to the right and
left of the mean. Because they must agree at the mean, it follows that this
will lead to an odd number of crossings of the Omega functions and thus to
some significant changes in shape, even though the Omega function is monotone
decreasing.

In this section, we use the Omega functions for some standard distributions
to illustrate some of these features. Because of the rapid growth and decay of
these functions, and in order to make some of their symmetries more apparent,
it is convenient to present graphs of the logarithms of the Omega functions.
Likewise, we use the logarithmic derivative to illustrate the changes in shapes.

We begin with the Omega function for the normal distribution. It is easy to



verify from the definition of {2 that for a normal distribution with mean g and
Var

standard deviation o, the slope of (2 at p is —~=

Figure 1 illustrates the natural logarithm of the Omega function for three
normal distributions with a common mean of 0 and ¢ = 1,0 = 0.75 and o = 0.5
respectively. The derivatives of log(€2) for the same values of o are shown in the
bottom panel.

Next we illustrate the Omegas for the logistic distribution whose density

—(r—a)

is L(r,a,b) = %. Figure 2 shows the natural logarithms of the

Omegas for L(r,0,0.5), L(r,0,0.6) and L(r,0,1) together with the derivatives

of log Q2. The logistic distribution has fatter tails than a normal with the same

mean and variance. Figure 3 contrasts the logarithms of the Omegas for a
logistic and a normal distribution with the same mean and variance. Because
of its fatter tails, the Omega function for the logistic distribution is dominated
by that of the normal as r tends to —oo and vice versa as r tends to oo. This
produces three crossings which are just discernable in Figure 3. In spite of the
close agreement of the two Omega functions near the mean, their shapes are
quite different. The bottom panel shows the extent of the differences in shape
of the two Omega functions.

Now we turn to two distributions defined over the half line [0, c0), the log-

. ) . _log(z—w)? . o2 . ..
normal distribution L_¢ 202 whose mean is etz and variance is is
V27O
. . . _1exp(=E .
02 and the Gamma distribution G(z, a,b) = 27! Fi’i)ga) whose mean is ab and

whose variance is ab?. The natural logarithm of the Omega function for the
Gamma distribution G(z,a,b) is illustrated in Figure 4 for a = 1,b=4,a = 2,
b=2and a =4, b = 1. These distributions have a common mean of 4 and
standard deviations of 16, 8 and 4 respectively. The derivatives of log(f2) are
shown in the bottom panel.

Although the Omega functions for lognormal and Gamma distributions with
a > b have similar qualitative features, as do the distributions themselves,they
are quite different in detail. We illustrate this with a comparison of the two
Omega functions for the case of the Gamma distribution G(r,2,1) and a log-

normal with the same mean and variance in Figure 5.
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Figure 1: Top panel LogQ(r) for normal distributions with common mean of

pw=1and o = 1.5 (solid), 0 = 2 (dashed) and ¢ = 2.5 (heavy dashed line).

Bottom panel % % for the same values of o.
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Figure 2: Top panel LogQ(r) for logistic distributions with common mean of
a = 0 for b = 0.5 (dashed), b = 0.6 (solid) and b = 1 (heavy dashed line).

Bottom panel ﬁ % for the same values of b.
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Figure 3: Top panel LogQ(r) for a logistic distribution (solid) and a normal
distribution (dashed line) with the same mean and variance. Bottom panel

Q(lr) % for the same distributions.
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Figure 4: LogQ(r)for Gamma(r,1,4) (dashed line),Gamma(r,2,2) (solid line)

and Gamma(r, 4, 1)(heavy dashed line). Bottom panel ﬁ 22 for the same dis-

tributions.
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Figure 5: LogQ(r) for Gamma(r,2,1) (dashed), and a lognormal with mean

and variance of 2 (solid line). Bottom panel g5 92 for the same distributions.
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4 An Example with Financial Returns Data

We illustrate the use of the Omega function of a distribution for the comparison
of returns from two equity indices, the FTSE 100 index and the S&P500 index.
The comparison is made on the basis of two years of daily index data from 3

January 1995 to 31 December 1996. The data sets consist of 505 returns. (Here

Index(i+1)—Index (i)
Index(7)

the ith return is r; = , where Index(7) is the closing level on
day 1.)

Comparison of the Omega functions for the returns distributions over this
period provides an indication of the relative quality of investments in the two
indices.

As the top panel of Figure 6 shows, the Omega function for the S&P500 index
has heavier tails than the FTSE 100 index as well as a higher mean return. The
observed difference in the two Omega functions is consistent with the standard
statistics for the two data sets. The skewness of the S&P 500 returns set is
—0.397 , compared with -0.157for the FTSE 100. The kurtosis of the S&P 500
returns set is 5.31 compared with 3.37 for the FTSE 100.

Over most of the observed range of returns, the S&P 500 Omega dominates
the Omega function of the FTSE 100. This indicates that one might expect
higher terminal values from an investment in the S&P 500 index than for an
investment in the FTSE 100 index over this period. This was indeed the case,
as the former produced a two year return of 61% while the latter produced a
return of 34% over the same period. The subsequent year produced returns of
31.6% in the S&P 500 compared with 26.6% in the FTSE 100.

The standard models in finance assume that returns on financial instruments
are normally distributed. The Jarque Bera test statistic for the FTSE 100 data
is 4.93 while that for the S&P 500 is 135. As the sample contains 505 data points,
we may reject the hypothesis that these returns are normally distributed at the
95% confidence level.

We may also compare the Omega functions for these data sets with those for
normal distributions with the same mean and variance. As the bottom panel
of Figure 6 and the top panel of Figure 7 show, the departure from the Omega
function of a normal distribution is more pronounced for the S&P 500 returns
than for those of the FTSE index. Moreover, both are substantially greater than

the departure from normal of that of a data set consisting of 505 random draws
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Figure 6: Top Panel Log€(r) for the FTSE 100 index (dashed), and the S&P500
index from 3 January 1995 to 31 December 1996. The range of returns is the
FTSE mean return +/— 2 FTSE standard deviations. Bottom Panel Log€(r)
for the FTSE 100 index (dashed) and a normal distribution with the same mean
and variance (heavy dotted line).
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Figure 7: Top Panel LogQ)(r) for the S&P 500 index (solid), and a normal
distribution with the same mean and variance (heavy dotted line). Bottom
Panel LogQ(r) for a sample of 505 data points from a normal distribution with
the mean and variance of the FTSE 100 index (solid) and the true Omega for a
normal with the same mean and variance.
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from a normal distribution of the same mean and variance. This is illustrated

in the bottom panel of Figure 7.

5 Further work

Of the many questions which are raised by this new way of looking at distribu-
tions, perhaps the most obvious is the question of what distributions arise from
“natural” conditions on Omega functions.The inverse problem of constructing
the distribution which produces a given Omega function is solved in [3] where
a closed form expression for the distribution in terms of Omega and its first two
derivatives is obtained. This, in turn, leads to some insights into the nature of
the )-characterisation of natural distributions.

The question of the Q-characterisation of the normal distribution is a natural
one, to which we do not as yet have a satisfactory answer. We do, however,
know the sampling distribution of the slope of the Omega curve for a normal
distribution at the mean, as this is — @, as we observed in section 3. Additional
statistics for Omega curves are the subject of continuing investigation.

The Omega function extends naturally to multivariate distributions and this

is discussed in a separate paper [4].
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Figure 8: Returns for the FTSE 100 index 3 January 1995 to 31 December 1996.
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S&P 500 Returns
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0.938] 0.1391) -0.8284| 0.2526] 0.9414| -0.3402 -0.5301] -0.2876] -0.5442 1.0485
0.7318) -0.1548 0.5569| -0.4254] 0.1441] 0.3084 1.275| -0.1674]| -0.4722 1.4633
0.1427| -0.1789] 0.9739] 0.0574| -0.3573] 0.5902 0.234] -0.3099 0.3796| 0.4223
-0.0723 -0.3007 0.0784| 0.4736| -0.3637| 0.2566| 0.0946| -0.1036 -0.2386] 0.4356
-0.587¢ 0.2277| 0.1212] -0.1875 0.9193| -0.0994] -0.003 -0.4661 -1.1146] 0.1437
-0.4647 0.6755| 0.5045] 0.1699 0.262] 1.1701| -1.7717 -0.0151] -0.8229 -0.3156
0.2238/ 0.0653] 0.9985| 0.1643| -0.091 -0.4726 -0.3182 0.0211| 0.4187| 0.2152
0.0086, 0.1009| -0.044 0.1711] -0.0709 0.7439| -1.3532 0.7159| 0.1359] 0.6497
0.3392] 0.0672] -0.1835 0.3488| -0.5082] 0.4183| -0.3662] 0.3014| -0.9411] 0.2365
0.1883] 0.1165] 1.3034| 0.9453] 0.7925 0.95 0.8761] -0.0553] 0.9608| -0.0813
0.442| -0.2919 -0.2468 0.1757| 0.5691] 0.9315] 0.9078] -0.6118 1.2323| 0.6974
-0.3997] 0.3244| -1.015] 0.021 0.457| 0.3836| 0.3907| 0.6261 0.0075 0.2412
0.4077| 0.4062]| -0.3124] 0.4191| -0.5366] -0.4088 -0.5256) 0.3111] 0.5227| -0.1613
-0.0043 -0.6088 0.424| 0.2148 0.568| 0.8776| 0.3117| 0.7828 0.58 0.8051
0.5081] -0.1502] -0.1579 0.453| -0.3065 0.7639] 0.2268| -0.3359] 1.3991] 1.1085
1.2395] -0.089 0.1618 0.392| 0.2624 0.557| 0.4372| -0.1796] 0.5055] -0.1413
0.5202| 0.0733] 0.4296] 0.8363 0.225| 0.9447| 0.5695| -2.2249 -0.1521 -0.127
-0.0686 0.6333] 0.0311] -0.0446] 0.8531| 0.0457| -0.2164] -0.7453 -0.2152] 0.2675
0.079| 0.8653] 1.2298| -0.0994] 0.1962 0.774| 0.4153| 0.3387| 0.2245] -0.0608
-0.2078 -0.1443] 0.4296| 0.2454| -0.3736] -0.1421] 0.0904], 0.2001] 0.5886| -1.0944
0.2645] 0.0996] 0.1474] 0.4399 0.266| -0.7464] 0.1071] -1.5837 -0.0786 -0.425
0.0395| 0.1736] -0.4325/ -0.6425 1.1038| -0.6498 0.0015] 0.0805| -0.1267 -0.0966|
0.1869| 0.2259]| 1.1013] -0.2178 0.6518| -0.5128 0.0627) -2.5364] 0.0321| -0.642]]
0.4124| -0.0874] 0.0196| 0.0138| 0.4047| -1.1312) -1.711 -0.2271] 0.0044| 1.3737
0.1403] 0.1167| -0.1979] -0.0688 -0.6466 1.1629] -0.272) 0.9071] 0.0481] -0.296]
-0.6698 1.0916] 0.5055| -0.0636] 0.2126| 1.6602| -0.1278 1.4967| 0.1632] -0.91]
0.1556] 0.0115] -0.757 0.8313| 0.3304] 0.0334| -0.3979 -0.7505 0.2575| -1.5431
0.4868) -0.0807 -1.3394] -0.2492| -0.1194] -1.3079 1.0215) -0.7765 0.7154| -0.0905
0.3793] 0.7383| 0.4646| -0.4603] 0.4703] -0.495 0.1024) -1.0887 -0.1772| -1.0513]
0.2773] -0.0763] 0.0145| 0.1066| -0.7673 -0.3847 1.0303] -0.0351] 1.2529| 0.7018
-0.9114 0.1528] 0.5437]| -0.1494] -0.094 -0.67] 1.4446] 0.7213| 0.2737, 0.7575
0.74] 0.0019 0.803] 0.1995| -1.5462] 0.6152] 0.6183| 0.7494| -0.3895 1.9438
-0.357 0.225| 0.0909] -0.024] 0.8438| 0.9994| -0.027 -0.7847 -0.5566 0.417
-0.1071 0.4167| 0.6428]| -0.7073] -0.9789] 0.7652| -0.0857 0.6895| -0.3057] -0.2604
0.0598/ 0.0853] -0.4052] -0.147 0.7509| -0.5779 0.6107, 0.7383 0.871] 0.5503
0.0433] -0.212 -0.1545 0.3359| 0.2408] 0.2531] 0.6339] 1.5736 0.411] 0.6378
-0.7228 -1.4211] -0.4306] 0.6282| 0.3824| -3.0827 -0.0579 1.9184| -0.1379 0.1283
0.2116| -0.0751] -0.1501] 0.2401| 0.0374| 1.0292] 0.8413) -0.3411] 0.2619| -0.3885
0.0041 0.859| -0.0089 -0.2515 -0.0667 -0.4578 -0.3567 0.3256] 0.3663| -1.739]
1.3267| 0.9434 0.034] 0.6432] 0.2947| 0.2292| 0.3713] 0.2687| 0.5417
0.098| 0.0038 0.195/ 0.1125) 0.7793] 0.3633] -0.9256] -0.2364| -0.1365
0.5795| -0.0038 0.0643| 0.5464 0.095/ 0.0874| -0.6397 -0.074 -0.4621
-0.2049 -0.9346] -0.1213] -0.5401] -0.5826] 1.7492| 0.5644| 0.5543] 0.0991
0.7177] -0.0134] -0.4038 -0.4085 -0.1603 -0.1471] -0.3841 -0.8366 -0.7041

Figure 9: Returns for the S&P 500 index 3 January 1995 to 31 December 1996.
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