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Abstract

As we leave behind the assumption of normality in return distributions, the

classical risk-reward Sharpe Ratio becomes a questionable tool for ranking risky

projects. In the spirit of Sharpe thinking, a more general risk-reward ratio © suit-

able to compare skewed return distributions with respect to a benchmark, is in-

troduced. This index captures two types of asymmetry information: (1) ”good”

volatility (above the benchmark) and ”bad” volatility (below the benchmark) are

di¤erently weighted, (2) asymmetrical preferences to ”small” and ”large” deviations

from the benchmark are modelled. The former goal is achieved by using one-sided

volatility measures, and the latter by choosing appropriate order for the one-sided

moments involved. The Omega Index (see Cascon et al. (2002) and the Upside

Potential Ratio (see Sortino (2000) follow as special cases of the index ©. More-

over, compatibility of the ranking rule based on ratio © with the expected utility

framework is proved.

JEL Subject Classification: G0,G1,G2.

Key words: Sharpe Index, One-Sided Risk Measures, First Order Risk Aver-

sion.
¤Quantitative and Bond Research , Cantonal Bank of Zurich, P.O. Box, CH-8010 Zurich, Switzerland;

e-mail: simone.farinelli@zkb.ch
yDipartimento di Statistica e Matematica, Università di Torino, Piazza Arbarello, 8, 10122 Torino,

Italy; e-mail:luisa.tibiletti@unito.it

1



1 Introduction1

More than thirty-…ve years ago, Sharpe [Sha66] introduced a performance measure for

mutual funds, originally termed as reward-to-variability. Subsequently, under the name

of Sharpe Ratio, it has became one of the most popular index in academic research and

in Financial Management practical applications. In recent years, the growing compelling

requirement to express performance of risky projects with respect to a benchmark b, has

lead to a wider interpretation of this ratio (see [Sha94]): the Sharpe Ratio of any investment

X is simply de…ned as the expected excess return (X ¡ b) over a benchmark b divided
by the corresponding standard deviation. Although this ratio is fully compatible with

normally distributed returns (or, in general, with elliptical returns), it may lose reliability

in interpreting risk adjusted performance as we relax this arti…cial assumption (see [Le99]

and [BeLe00]2). In an asymmetrical world, the ”good” volatility (above the benchmark)

and ”bad” volatility (below the benchmark) of (X ¡ b) may be strongly di¤erent. The
question to ask is whether we are interested in separate information about them or rather

in a global one. The answer depends on the goal. If our aim is pricing a risky asset,

where we focus on capturing the ”stability” around a ”central tendency”, then a global

”two-sided” information is required. In this case, a two-sided volatility measure, as the

standard deviation, hits the goal. But a di¤erent perspective may be of our interest. In

recent normative requirements, prevention to risk default has become a compelling point.

Think of the worldwide explosion of credit derivative products like Credit Default Swaps

and Credit Linked Notes since 1996. Another current hot topic is the responsibility of

risk managers to guarantee the pro…tability of mutual and pension funds, as well as to

meet the future liabilities keeping the funding ratio above the solvability constraints over a

long term time horizon. In all above cited cases, all attention is focused on the ”left-sided”

variability. So, as all we are concerned about is falling below (or above) a benchmark b,

one-sided measures are the right tools to use (see [GKD02] ). In conclusion, the classical

Sharpe Index based on the most common two sided variability measures, the expected

value (for the ”favorable” volatility) and the standard deviation (for the ”unfavorable”

volatility), may be inappropriate in this context.

The paper at hand heads a step beyond this classical approach in order to handle with

1We would like to thank Lucio Bertoli-Barsotti and Alessandra Durio for their valuable comments and
suggestions. We are also grateful to Con Keating for a stimulating discussion on the topic. The views
expressed herein are those of the authors and do not necessarily re‡ect opinions shared by Cantonal Bank
of Zurich.

2Bernardo and Ledoit ([BeLe00]) to overcome the problem propose a semi-parametric alternative based
on the gain-loss ratio that cuts out the extremal events on the tails of the distribution.
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asymmetrical return distributions and enhance asymmetrical preferences. The target is

hit by a new risk-reward index ©b (see De…nition 2.1). A double type of asymmetrical

preferences can be modelled:

² asymmetry in preference to ”good” and ”bad” volatility from the benchmark,

² asymmetry in preference to ”small” and ”large” deviations from the benchmark.

The former asymmetrical attitude is captured by using one-sided volatility measures.

But additional advantages in using one-sided risk measures exist. Among the others they

are convex measures capturing the spontaneous idea that portfolio diversi…cation tends to

shrink the extremal events on both distribution tails. Moreover, upper and lower bounds

for the index involving an asset portfolio are easily carried out in terms of the correspon-

dent one-sided moments of the assets.

The latter asymmetrical attitude is described by the orders of the one-sided moments

involved. The higher the order is, the higher the agent’s inclination (in the case of ex-

pected gains) or dislike (in the case of expected losses) for the extremal events. Therefore,

if moderate deviations from the benchmark are relatively harmless when compared to

large deviations, then a high order for the left-sided moment is suitable. Vice versa, if

small successful outcomes over the benchmark are relatively appreciated with respect to

exceptional large stakes, then a low order for the right-sided moment well …ts the purpose.

As expected, we prove that the ranking rule based on the performance index ©b is

benchmark dependent. As intuition suggests, for a …xed the risky project X, as the bench-

mark b increases the performance index ©b decreases. For a glance at the sensitivity of

the performance to a benchmark shift, the elasticity of ©b at b is worked out.

A further point deserves a thoroughly insight. We show that a decision-making rule

based on ©b index is fully consistent with the expected utility theory. The representative

agent with asymmetrical preferences towards ”good” and ”bad” variability displays …rst-

order risk aversion according to Segal-Spivak’s [SeSp90] de…nition in correspondence to the

benchmark b: The associated utility function is a piecewise polynomial. Its degree depends

on the preference to extremal events on the left and right tails of the distributions.

The paper is organized as follows. In Section 2 the properties of the one-sided vari-

ability measures are explored. In Section 3 the performance index ©b is introduced. Then

absolute and relative sensitivity to the benchmark is evaluated. In Section 4 the selec-

tion rule based one-sided moments is proved to be compatible with the expected utility

framework. A conclusion in Section 5 ends the note.
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2 One-sided variability measures

Let consider an asset with random total return over a certain period, denoted by X.

Its performance is to be measured in comparison with a reference target b. In general,

the benchmark is an exogenous data that re‡ects the context and may vary with the

time. It could be the liability return for a pension fund, the total return of benchmark

portfolios for traditional asset managers, or just the money market rates for hedge funds.

The variable under consideration becomes the excess 3 return (X ¡ b). We assume that
X is integrable, i.e., E[ jXj ] <1 : If necessary, we also assume the existence of all higher

moments up to the order required.

We introduce the notation »¡ := ¡min f»; 0g and »+ = max f0; »g and the following

De…nition 2.1 Let a benchmark b 2 R and p > 0 be …xed. The p-th partial moments of

the excess return X ¡ b
mp
¡;b(X) := E[f(X ¡ b)¡gp] mp

+;b(X) := E[f(X ¡ b)+gp]
are called, respectively, the left-sided moment and the right-sided moment of p-th order

for the excess return of X with reference to the benchmark b.

The left-sided moments are loss risk measures, whereas the right-sided ones are gain

variability measures.

2.0.1 Properties of one-sided moments

The use of left-sided moments is not new in …nance. As a matter of fact the focus on

downside risk is not only sensible and theoretically founded but it can even be traced

back to Markowitz [Mar52] and Roy [Ro52] (for a historical survey see [Na99]). Fishburn

[Fn77] uses them as risk measures in a mean-risk analysis frame proving compatibility

with expected utility theory. A set of properties are collected below:

² one-sided p-th order moments are always non-negative, for p > 0.
² Clearly, the one-side moments are not positive homogeneous measures, and thus not
scale invariant. This drawback can be easily overcome by the following normaliza-

tion:

½p¡;b(X) := E
1=p[f(X ¡ b)¡gp] ½p+;b(X) := E

1=p[f(X ¡ b)+gp]:
3Sharpe [Sha66] considered the return R, instead to the excess of return X = R¡ b. Note that we can

come back to this original de…nition by setting b = 0.
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Note that ½2¡;b(X) with b = E[X] coincides with the well-known semi-standard

deviation.

² ½p¡;b and ½p+;b are coherent risk measures (see [Ti02] and [Fr02]) and, in particular,
they both enjoy sub-additivity.

² Sub-additivity captures the intuitive e¤ects of diversi…cations of the portfolio. The
rationale behind sub-additivity can be summarized by the statement ”a merger does

not create extra risk” (see [ADEH99] page 209), and if applied to favorable variabil-

ity, ”does not create extra return”. In other words, diversi…cation tends to shrink

both the extreme tails of the distribution: no extra losses and no extra gains are

created!

Remark 2.2 How to choose the proper order p to use? The choice depends on the desired
relevance given to the magnitude of deviations: the higher p, the more emphasis is given

to the outcomes on the tail involved. In other words, to highlight extremal events, one has

just to select a higher order p. Examples will be given in the next section.

As far as a two-sided variability measure is concerned, a way to capture the pres-

ence of extremal events in an asset return distribution is to look at its higher moments.

For example, the skewness is provided by a properly normalized third moment. Positive

skewness means that the right tail of the distribution supports a greater probability mass

than the left one. Despite of this clear interpretation, the step from the analysis of single

asset to that of a portfolio is a puzzling task. Intuition suggests that some elementary

properties of the assets’ return should be preserved under linear combination. Unfortu-

nately this conjecture turns out to be false: with the exception of elliptical distributions

not even a portfolio of identical assets inherits their characteristics. It can be proved that

even null correlated identically distributed assets may switch in skewness direction as they

are composed in the portfolio. The real ”culprit” of this embarrassing drawback is the

overwhelming presence of the mixed moments in the calculations of the higher moments.

Since both unfavorable and favorable events for all assets contribute to the portfolio re-

turn distribution, not only the magnitude of portfolio moments but even their sign (in

the odd order case) may have no relation with the ones of the portfolio assets (see [Ti02]

for a deeper discussion on the topic). Moreover, no bounds for the higher moments are

available. On the contrary, this kind of problems does not arise when using one sided

measures, and clear-cut upper bounds for the measures ½p¡;b (and ½
p
+;b) in terms of the

corresponding ½p¡;b (and ½
p
+;b) of the addenda can be easily worked out.
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Proposition 2.3 Given the portfolio S =
Pn

i=1 cnXn of risky assets Xi and weights

ci 2 R , ; i = 1; ::n, following lower and upper bounds hold

0 · ½p¡;b(S) ·
nX
i=1

jcnj½p¡;b(Xn)

0 · ½p+;b(S) ·
nX
i=1

jcnj½p+;b(Xn):

PROOF: By Minkowski’s inequality and convexity of the operators (¢)+ and (¢)¡. 2

3 The one-sided variability ratio ©b

Let I := ¹=(X) be the support of X and b an interior point of the convex hull of I. This

simply means that a probability mass exists on the left of the benchmark, as it is sensible

to be. Existence and …niteness of the one sided moments involved 4 is also required.

De…nition 3.1 The performance ratio based on one sided risk measures of an asset with
total return X and benchmark b is de…ned for any p; q > 0 using its excess return X ¡ b
as:

©p;qb (X) :=
E1=p[f(X ¡ b)+gp]
E1=q[f(X ¡ b)¡gq] : (3.1)

The positive real numbers p and q are called the right and respectively left orders of

the performance ratio.

Remark 3.2 The ©b is nothing but the ratio between the favorable events (properly
weighted) and the unfavorable ones. It can be seen just as the reward-to-variability, or, in

economic terms, as the shadow price for unit of risk for the excess return

Remark 3.3 As the benchmark b is …xed, the higher the index ©p;qb , the more preferable
is the risky trade X. This is a selection rule providing preference ranking for a set of

comparable trades, that is, having the same benchmark.

4The goal is achieved by assuming a …nite support I for X. As we are modelling real …nancial data,
this is a realistic assumption. Anyway, looser condition can stressed out.
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Remark 3.4 As mentioned before, the higher the orders p and q are, the more emphasis
is given to the extremal events on the distribution tails. For a given benchmark b, the

left order q is supposed to re‡ect agent’s feeling about the relative consequences of falling

below b by various amounts. If the agent’s main concern is failure to hit the target without

particular regard to the amount, then a small value (i.e. q << 1) for the left order is

appropriate. On the other hand, if small deviations below the benchmark are relatively

harmless when compared to large deviations (catastrophical events), then a large value

(i.e. q >> 1) for the left order is advisable. An analogous reasoning can be stressed for

the choice of the proper right order p. It captures the relative appreciation for outcomes

above the benchmark. If moderate gains are relatively highly appreciated with respect to

exceptional performance, a low right order (i.e. p << 1) is indicated. Vice versa, an high

p > 1 is suggested to describe the opposite attitude.

Remark 3.5 In the context of pension fund performance measurement Sortino [So00]
de…ned the upside potential ratio

R(X) :=
E[(X ¡MAR)+]p
E[f(X ¡MAR)¡g2] : (3.2)

where MAR is the minimum acceptable return. It is worthwhile noting that R (X) can

be seen as a special case of ©p;qb ; as soon as we …x b =MAR and the p = 1, q = 2:

Example 3.6 A special case of symmetrical preference to small and large deviations from
the benchmark: the Omega Index.

Let p = q := 1: The index ©p;qb reduces to

­b(X) =
E[(X ¡ b)+]
E[(X ¡ b)¡] : (3.3)

an index introduced in [CKS02]. 5 This index has a very natural interpretation: it is the

ratio between the expected gains and the expected losses. Due to a non sharp preference

in extremal events (both favorable and unfavorable), ­ may turn out to be a smooth

5[CKS02] de…ned

­b(X) :=
R +1
b

[1¡F (x)]dxR b
¡1 F (x)dx

where F is the distribution function of X. Since E[max(0;X ¡ b)] = R+1b [1¡ F (x)]dx = E[(X ¡ b)+]
and E[min(0;X ¡ b)] = R b¡1 F (x)dx = E[(X ¡ b)¡]
equivalence between the two of the de…nitions is proved.
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water-shed for discriminating di¤erently distributed assets. Let us consider the following

asset total returns:

X(!) =

8><>:
3 if ! = 1

3

4 if ! = 1
3

11 if ! = 1
3

Y (!) =

8><>:
1 if ! = 1

3

8 if ! = 1
3

9 if ! = 1
3
:

Let b = 6, so the excess of returns become

(X(!)¡ 6) =

8><>:
¡3 if ! = 1

3

¡2 if ! = 1
3

+5 if ! = 1
3

(Y (!)¡ 6) =

8><>:
¡5 if ! = 1

3

+2 if ! = 1
3

+3 if ! = 1
3
:

clearly, they display samemean and variance. Straightforward calculations prove­6(X) =

­6(Y ) = 1, so X and Y turn out to be indi¤erent under ­6.

Nevertheless, the trades under comparison show di¤erent risk-reward features. As X

displays ”moderate” unfavorable outcomes (x = ¡3; and x = ¡2) and on the other hand
the chance of one high stake (x = +5) whereas the trade Y displays ”moderate” favorable

outcomes (x = +2 and x = +3) and a single relevant loss (x = ¡5). In conclusion, since
p = q = 1, a symmetrical preference has been expressed over the tails. So, in line with

the preferences declared, with b = 6, ­ is a dull discriminating tool.

Remark 3.7 The orders p and q do not need to be necessarily equal. On the contrary, an
asymmetrical preference on the extremal favorable and unfavorable events is quite normal

in real life decisions. An example may cut short any perplexities.

Example 3.8 Asymmetrical preference to small and large deviations from the benchmark

² Suppose one dislikes the chance of having huge losses (even though with low prob-
ability), then p < q is …xed. For instance let p = 1 and q = 2: For the Example 3.6,

we get

©p;qb (X) =
E[(X ¡ b)+]p
E[f(X ¡ b)¡g2] =

5
3q
13
3

and ©p;qb (Y ) =
E[(Y ¡ b)+]p
E[f(Y ¡ b)¡g2] =

5
3q
25
3
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Therefore, ©p;qb (X) > ©
p;q
b (Y ) so X should be preferred to Y . A coherent policy with

the declared preferences is suggested.

² Suppose, now, that the …nancial policy gives di¤erent advises: no care of losses
(both small and large deviations from the benchmark), but good chances to highly

overcome the benchmark are desirable. Let p > q be …xed. For example, p = 2 and

q = 1:

©p;qb (X) =

p
E[f(X ¡ b)+g2]
E[(X ¡ b)¡] =

q
25
3

5
3

and ©p;qb (Y ) =

p
E[(Y ¡ b)+]2
E[(Y ¡ b)¡] =

q
13
3

5
3

Again, since ©p;qb (X)) > ©
p;q
b (Y ), X should be preferred to Y . Again, coherence with

the …nancial advises turns out.

² Suppose, di¤erent preferences are declared: no care of large deviations from below

the benchmark, but very good chances of overcoming (no matter if that happens

with small successful) the benchmark are required. Let p < q be …xed. For example,

p = 1
2
and q = 1:

©p;qb (X) =
(E[
p
(X ¡ b)+])2

E[(X ¡ b)¡] =
1

3
and ©p;qb (Y )

(E[
p
(Y ¡ b)+]2)

E[(Y ¡ b)¡] =

¡p
2 +

p
3
¢2

15

Again, ©p;qb (X) > ©
p;q
b (Y ) then X should be preferred to Y: Again, coherence with the

…nancial advises turns out.

Remark 3.9 It is worthwhile noting how the classical Sharpe Ratio should be a dull tool
for discriminating di¤erently distributed trades. Excess returns (X ¡ b) and (Y ¡ b) in
Example 3.6 have the same (null) mean and the same standard deviation. Sharpe index

is equal to zero: no discrimination between so di¤erent assets is signaled! Sharpe index

quali…es X and Y indi¤erent with respect to the benchmark b = 6. This result is not

surprising at all. The choice of two sided variability measures for both the potential gains

and losses expresses a symmetrical preference to negative and positive deviations from the

benchmark. Variables under consideration show an ”equal” stability from the benchmark.
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4 Sensitivity to the benchmark

The choice of the benchmark is an exogenous question with respect to analysis of the

performance. The Index ©p;qb is of course a function of the benchmark b. We want to

investigate this functional dependence, in particular by analyzing separately the cases of

absolute and relative variations. The latter will lead to the concept of elasticity.

4.0.2 Absolute Variations of ©p;qb

Intuitively the higher the benchmark b is, the lower the possibility of being successful an

therefore the higher the benchmark is, the lower the performance index should be. This

statement is more precisely way formalized by the following

Proposition 4.1 For given left and right orders p and q, the index ©p;qb (X) is a decreasing
function of the benchmark b.

PROOF: Since Ef(X ¡ b)+gp = R +1
b
(x ¡ b)pdF (x) is a decreasing function of b,

whereas Ef(X ¡ b)¡gp = ¡ R b¡1(x ¡ b)pdF (x) is an increasing function of b; the ratio
©p;qb (X) turns out to be a decreasing function of the benchmark b: 2

4.0.3 Relative Variations of ©p;qb

For a …xed benchmark b, the performance index ©p;qb naturally induces a total ordering

rule on the set of candidate investments with increasing values of the index. However,

Proposition 4.1 proves that the performance index ©p;qb decreases for all trades under

consideration, as b increases. A preference ordering may be completely modi…ed by a

benchmark shift. In a preference ordering framework, the key point is no longer what the

absolute impact on ©p;qb due to a variation of b is, but what the sensitivity of ©p;qb to a

benchmark variation. Let us start with an illustrating example.

Example 4.2 Preference ordering induced by the index is not invariant under change of
benchmark: Indeed it may be highly sensitive to its variations.

Let us recall Example 3.6 and lower the benchmark to b = 4. The excess returns

become then
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(X(!)¡ 4) =

8><>:
¡1 if ! = 1

3

0 if ! = 1
3

+7 if ! = 1
3

(Y (!)¡ 4) =

8><>:
¡3 if ! = 1

3

+4 if ! = 1
3

+5 if ! = 1
3

again, they have the same mean (= 2) and the same variance (= 50
3
). At this bench-

mark level, the index ­ is no longer a dull discriminating index. In fact, ­4(X) = 7

whereas ­4(Y ) = 3 and therefore X should be preferred to Y .

Remark 4.3 Note that the classical Sharpe index is still equal for both trades, which is
- as mentioned before - in line with the choice of two sided variability measures. The two

sided ”dispersion” of the data is quite similar for both X and Y . Vice versa, the use of one

sided variability measures, implies asymmetrical preferences to favorable and unfavorable

events. In conclusion, with the exception of some special benchmark levels, ­ is more

skewness-sensitive than the Sharpe ratio.

A way to have a glance of the sensitivity of ©p;qb with respect to a benchmark shift is

to look at its elasticity.

Proposition 4.4 For given left and right orders q and p, the elasticity of the index
©p;qb (X) at the benchmark b is

²(©p;q(¢) (X); b) = ¡b
(R +1

b
(x¡ b)p¡1dF (x)R +1

b
(x¡ b)pdF (x) +

R b
¡1(¡(x¡ b))q¡1dF (x)R b
¡1(¡(x¡ b))qdF (x)

)

In the Omega special case, that is with p = q = 1 the expression for the elasticity becomes

²(­(¢)(X); b) = ¡b
½
1¡ F (b)
E(X ¡ b)+ +

F (b)

E(X ¡ b)¡
¾

PROOF. Note that

©p;qb (X) =
p
p
E[f(X ¡ b)+gp]

q
p
E[f(X ¡ b)¡gq] =

p

qR +1
b
(x¡ b)pdF (x)

q

qR b
¡1(¡(x¡ b))qdF (x)

and thus for the …rst partial derivative of the index with respect to the benchmark

@

@b
©p;qb (X) = ¡

(R +1
b
(x¡ b)p¡1dF (x)R +1

b
(x¡ b)pdF (x) +

R b
¡1(¡(x¡ b))q¡1dF (x)R b
¡1(¡(x¡ b))qdF (x)

)
©p;qb (X) < 0
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Thus

²(©p;q(¢) (X); b) = ¡b
·
@

@b
log ©p;qb (X)

¸
=

= ¡b
(R +1

b
(x¡ b)p¡1dF (x)R +1

b
(x¡ b)pdF (x) +

R b
¡1(¡(x¡ b))q¡1dF (x)R b
¡1(¡(x¡ b))qdF (x)

)
:

If p = q = 1,we get the elasticity for ­ :

²(­(¢)(X); b) = ¡b
n

1¡F (b)
E(X¡b)+ +

F (b)
E(X¡b)¡

o
2

Remark 4.5 Note that the elasticity of ­ is proportional to 1
H
= 1¡F (b)

E[(X¡b)+] +
F (b)

E[(X¡b)¡] ,
where H is the weighted harmonic mean of the expected gains, i.e. E[(X ¡ b)+] and the
expected losses, i.e. E[(X ¡ b)¡], with weights 1¡ F (b), i.e., the probability to get above
the benchmark, and F (b), i.e., the probability to get below the benchmark. Moreover, if

b coincides with the median of X, the ²(­(¢)(X); b) = 0 and ­ is anelastic.

Although at …rst sight the elasticity may seem to have a cumbersome expression, it

may turn out to be a friendly-to-use formula as soon as the return empirical distribution

is known.

5 Expected Utility and One-Sided Measures

In his cornerstone paper Fishburn [Fn77] extended the seminal mean-target semivariance

model mentioned byMarkowitz [Mar52] and discussed in detail by Mao[Mao70] and Porter

[Po74]. If risk is measured by the left sided moment of q-th order, mean-risk ratio is

congruent with the expected utility theory of von Neumann and Morgenstern.

Along the same line of thought it is possible to identify analytically a utility function

depending only on mean and the left and the right sided moment up to order q and p.

Theorem 5.1 Let b 2 R be a …xed benchmark and An the set of all random variables

X having …nite partial moments mj
¡;b(X) and m

j
+;b(X) for all positive integers j · n.

If the objective function of an expected utility maximizer on An acts only on the basis of
mean and on the left and the right sided moment up to order n, then the associate utility

function has the following form

ub(x) =

(
¡Pq

j=1 kj jx¡ bjj x · bPp
j=1 hj(x¡ b)j x > b
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where kj and hj are non-negative parameters. The expected utility has then the following

form for any X 2 An

E[ub(X)] = ¡
qX
j=1

kjm
j
¡;b(X) +

pX
j=1

hjm
j
+;b(X):

PROOF:

By Taylor’s expansion formulae from the left and from the right for the utility function u

at b.

Remark 5.2 Compatibility of ©p;qb rule with expected utility.

Let p and q be the right and left moment order. Let

kj =

(
= 0 j 6= q
6= 0 j = q

hj =

(
= 0 j 6= p
6= 0 j = p

The expected utility has then the following form

E[ub(X)] = ¡kqmq
¡;b(X) + hpm

p
+;b(X) = hp

·
mp
+;b(X)¡

kp
hp
mq
¡;b(X)

¸
Since the utility function is de…ned up to a linear transformation, we conclude that the

expected utility can be expressed by a linear combination of two indexes: 1) mp
+;b(X) an

index of the expected favorable outcomes, 2)mq
¡;b(X) an index of the expected unfavorable

outcomes. Both the indexes are properly ”shaped” (by the orders p and q , respectively)

in order to describe the agent’s preference toward the extremal events.

In conclusion, a selection rule based on the ©p;qb is fully compatible with the expected

utility theory as soon as the preferences are described as above.

Remark 5.3 If for the sensitivities k 6= h, the utility function ub displays a kink at b.

According to Segal-Spivak’s de…nition [SeSp90], the representative agent is said to have

…rst-order risk aversion. Non di¤erentiability means that the sensitivity to get above or

below the target is not symmetrical. Empirical tests have proved that the assumption of

…rst-order risk aversion can substantially improve the description of the agent’s acting in

real life (see [EZ01]).

6 Conclusion

In the spirit of Sharpe thinking ([Do01]) a new risk-reward ratio © able to measure

the performance relative to a benchmark of skewed risky project, is introduced. Two
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di¤erent types of asymmetrical preferences can be modelled: 1) asymmetrical preference

to ”favorable” and ”unfavorable” variability from the benchmark, and 2) asymmetrical

preference to ”small” and ”large”deviations. The former kind of asymmetry is captured

by using one-sided variability measures, the latter through an appropriate ”weighting” of

the order of the one-sided moments involved. The ranking rule based on © is proved to

be compatible with the expected utility approach.
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